smallseo.info

c++ interview questions

Top c++ frequently asked interview questions

Do I cast the result of malloc?

In this question, someone suggested in a comment that I should not cast the results of malloc, i.e:

int *sieve = malloc(sizeof(int)*length);

rather than:

int *sieve = (int *)malloc(sizeof(int)*length);

Why would this be the case?


Source: (StackOverflow)

What does "static" mean in a C program?

I've seen the word static used in different places in C code; is this like a static function/class in C# (where the implementation is shared across objects)?


Source: (StackOverflow)

Why does the C preprocessor interpret the word "linux" as the constant "1"?

Why does the C preprocessor in GCC interpret the word linux (small letters) as the constant 1?

test.c:

#include <stdio.h>
int main(void)
{       
    int linux = 5;
    return 0;
}

Result of $ gcc -E test.c (stop after the preprocessing stage):

....
int main(void)
{
    int 1 = 5;
    return 0;
}

Which -of course- yields an error.

(BTW: There is no #define linux in the stdio.h file.)


Source: (StackOverflow)

What is the strict aliasing rule?

When asking about common undefined behavior in C, souls more enlightened than I referred to the strict aliasing rule.
What are they talking about?


Source: (StackOverflow)

What is the name of the "-->" operator?

After reading Hidden Features and Dark Corners of C++/STL on comp.lang.c++.moderated, I was completely surprised that the following snippet compiled and worked in both Visual Studio 2008 and G++ 4.4.

Here's the code:

#include <stdio.h>
int main()
{
    int x = 10;
    while (x --> 0) // x goes to 0
    {
        printf("%d ", x);
    }
}

I'd assume this is C, since it works in GCC as well. Where is this defined in the standard, and where has it come from?


Source: (StackOverflow)

Do-While and if-else statements in C/C++ macros

In many C/C++ macros I'm seeing the code of the macro wrapped in what seems like a meaningless do while loop. Here are examples.

#define FOO(X) do { f(X); g(X); } while (0)
#define FOO(X) if (1) { f(X); g(X); } else

I can't see what the do while is doing. Why not just write this without it?

#define FOO(X) f(X); g(X)

Source: (StackOverflow)

What does the C ??!??! operator do?

I saw a line of C that looked like this:

!ErrorHasOccured() ??!??! HandleError();

It compiled correctly and seems to run ok. It seems like it's checking if an error has occurred, and if it has, it handles it. But I'm not really sure what it's actually doing or how it's doing it. It does look like the programmer is trying express their feelings about errors.

I have never seen the ??!??! before in any programming language, and I can't find documentation for it anywhere. (Google doesn't help with search terms like ??!??!). What does it do and how does the code sample work?


Source: (StackOverflow)

Improve INSERT-per-second performance of SQLite?

Optimizing SQLite is tricky. Bulk-insert performance of a C application can vary from 85 inserts-per-second to over 96000 inserts-per-second!

Background: We are using SQLite as part of a desktop application. We have large amounts of configuration data stored in XML files that are parsed and loaded into an SQLite database for further processing when the application is initialized. SQLite is ideal for this situation because it's fast, it requires no specialized configuration and the database is stored on disk as a single file.

Rationale: Initially I was disappointed with the performance I was seeing. It turns-out that the performance of SQLite can vary significantly (both for bulk-inserts and selects) depending on how the database is configured and how you're using the API. It was not a trivial matter to figure-out what all of the options and techniques were, so I though it prudent to create this community wiki entry to share the results with SO readers in order to save others the trouble of the same investigations.

The Experiment: Rather than simply talking about performance tips in the general sense (i.e. "Use a transaction!"), I thought it best to write some C code and actually measure the impact of various options. We're going to start with some simple data:

  • A 28 meg TAB-delimited text file (approx 865000 records) of the complete transit schedule for the city of Toronto
  • My test machine is a 3.60 GHz P4 running Windows XP.
  • The code is compiled with MSVC 2005 as "Release" with "Full Optimization" (/Ox) and Favor Fast Code (/Ot).
  • I'm using the SQLite "Amalgamation", compiled directly into my test application. The SQLite version I happen to have is a bit older (3.6.7), but I suspect these results will be comparable to the latest release (please leave a comment if you think otherwise).

Let's write some code!

The Code: A simple C program that reads the text file line-by-line, splits the string into values and then will inserts the data into an SQLite database. In this "baseline" version of the code, the database is created but we won't actually insert data:

/*************************************************************
    Baseline code to experiment with SQLite performance.

    Input data is a 28 Mb TAB-delimited text file of the
    complete Toronto Transit System schedule/route info 
    from http://www.toronto.ca/open/datasets/ttc-routes/

**************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "sqlite3.h"

#define INPUTDATA "C:\\TTC_schedule_scheduleitem_10-27-2009.txt"
#define DATABASE "c:\\TTC_schedule_scheduleitem_10-27-2009.sqlite"
#define TABLE "CREATE TABLE IF NOT EXISTS TTC (id INTEGER PRIMARY KEY, Route_ID TEXT, Branch_Code TEXT, Version INTEGER, Stop INTEGER, Vehicle_Index INTEGER, Day Integer, Time TEXT)"
#define BUFFER_SIZE 256

int main(int argc, char **argv) {

    sqlite3 * db;
    sqlite3_stmt * stmt;
    char * sErrMsg = 0;
    char * tail = 0;
    int nRetCode;
    int n = 0;

    clock_t cStartClock;

    FILE * pFile;
    char sInputBuf [BUFFER_SIZE] = "\0";

    char * sRT = 0;  /* Route */
    char * sBR = 0;  /* Branch */
    char * sVR = 0;  /* Version */
    char * sST = 0;  /* Stop Number */
    char * sVI = 0;  /* Vehicle */
    char * sDT = 0;  /* Date */
    char * sTM = 0;  /* Time */

    char sSQL [BUFFER_SIZE] = "\0";

    /*********************************************/
    /* Open the Database and create the Schema */
    sqlite3_open(DATABASE, &db);
    sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);

    /*********************************************/
    /* Open input file and import into Database*/
    cStartClock = clock();

    pFile = fopen (INPUTDATA,"r");
    while (!feof(pFile)) {

        fgets (sInputBuf, BUFFER_SIZE, pFile);

        sRT = strtok (sInputBuf, "\t");     /* Get Route */
        sBR = strtok (NULL, "\t");          /* Get Branch */    
        sVR = strtok (NULL, "\t");          /* Get Version */
        sST = strtok (NULL, "\t");          /* Get Stop Number */
        sVI = strtok (NULL, "\t");          /* Get Vehicle */
        sDT = strtok (NULL, "\t");          /* Get Date */
        sTM = strtok (NULL, "\t");          /* Get Time */

        /* ACTUAL INSERT WILL GO HERE */

        n++;

    }
    fclose (pFile);

    printf("Imported %d records in %4.2f seconds\n", n, (clock() - cStartClock) / (double)CLOCKS_PER_SEC);

    sqlite3_close(db);
    return 0;
}

The "Control"

Running the code as-is doesn't actually perform any database operations, but it will give us an idea of how fast the raw C file IO and string processing operations are.

Imported 864913 records in 0.94 seconds

Great! We can do 920 000 inserts-per-second, provided we don't actually do any inserts :-)


The "Worst-Case-Scenario"

We're going to generate the SQL string using the values read from the file and invoke that SQL operation using sqlite3_exec:

sprintf(sSQL, "INSERT INTO TTC VALUES (NULL, '%s', '%s', '%s', '%s', '%s', '%s', '%s')", sRT, sBR, sVR, sST, sVI, sDT, sTM);
sqlite3_exec(db, sSQL, NULL, NULL, &sErrMsg);

This is going to be slow because the SQL will be compiled into VDBE code for every insert and every insert will happen in it's own transaction. How slow?

Imported 864913 records in 9933.61 seconds

Yikes! 1 hour and 45 minutes! That's only 85 inserts-per-second.

Using a Transaction

By default SQLite will evaluate every INSERT / UPDATE statement within a unique transaction. If performing a large number of inserts, it's advisable to wrap your operation in a transaction:

sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {

    ...

}
fclose (pFile);

sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);

Imported 864913 records in 38.03 seconds

That's better. Simply wrapping all of our inserts in a single transaction improved our performance to 23 000 inserts-per-second.

Using a Prepared Statement

Using a transaction was a huge improvement, but recompiling the SQL statement for every insert doesn't make sense if we using the same SQL over-and-over. Let's use sqlite3_prepare_v2 to compile our SQL statement once and then bind our parameters to that statement using sqlite3_bind_text:

/* Open input file and import into Database*/
cStartClock = clock();

sprintf(sSQL, "INSERT INTO TTC VALUES (NULL, @RT, @BR, @VR, @ST, @VI, @DT, @TM)");
sqlite3_prepare_v2(db,  sSQL, BUFFER_SIZE, &stmt, &tail);

sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {

    fgets (sInputBuf, BUFFER_SIZE, pFile);

    sRT = strtok (sInputBuf, "\t");     /* Get Route */
    sBR = strtok (NULL, "\t");      /* Get Branch */    
    sVR = strtok (NULL, "\t");      /* Get Version */
    sST = strtok (NULL, "\t");      /* Get Stop Number */
    sVI = strtok (NULL, "\t");      /* Get Vehicle */
    sDT = strtok (NULL, "\t");      /* Get Date */
    sTM = strtok (NULL, "\t");      /* Get Time */

    sqlite3_bind_text(stmt, 1, sRT, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 2, sBR, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 3, sVR, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 4, sST, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 5, sVI, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 6, sDT, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 7, sTM, -1, SQLITE_TRANSIENT);

    sqlite3_step(stmt);

    sqlite3_clear_bindings(stmt);
    sqlite3_reset(stmt);

    n++;

}
fclose (pFile);

sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);

printf("Imported %d records in %4.2f seconds\n", n, (clock() - cStartClock) / (double)CLOCKS_PER_SEC);

sqlite3_finalize(stmt);
sqlite3_close(db);

return 0;

Imported 864913 records in 16.27 seconds

Nice! There's a little bit more code (don't forget to call sqlite3_clear_bindings and sqlite3_reset) but we've more than doubled our performance to 53 000 inserts-per-second.

PRAGMA synchronous = OFF

By default SQLite will pause after issuing a OS-level write command. This guarantees that the data is written to the disk. By setting synchronous = OFF, we are instructing SQLite to simply hand-off the data to the OS for writing and then continue. There's a chance that the database file may become corrupted if the computer suffers a catastrophic crash (or power failure) before the data is written to the platter:

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA synchronous = OFF", NULL, NULL, &sErrMsg);

Imported 864913 records in 12.41 seconds

The improvements are now smaller, but we're up to 69 600 inserts-per-second.

PRAGMA journal_mode = MEMORY

Consider storing the rollback journal in memory by evaluating PRAGMA journal_mode = MEMORY. Your transaction will be faster, but if you lose power or your program crashes during a transaction you database could be left in a corrupt state with a partially-completed transaction:

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA journal_mode = MEMORY", NULL, NULL, &sErrMsg);

Imported 864913 records in 13.50 seconds

A little slower than the previous optimization at 64 000 inserts-per-second.

PRAGMA synchronous = OFF and PRAGMA journal_mode = MEMORY

Let's combine the previous two optimizations. It's a little more risky (in case of a crash), but we're just importing data (not running a bank):

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA synchronous = OFF", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA journal_mode = MEMORY", NULL, NULL, &sErrMsg);

Imported 864913 records in 12.00 seconds

Fantastic! We're able to do 72 000 inserts-per-second.

Using an In-Memory Database

Just for kicks, let's build upon all of the previous optimizations and redefine the database filename so we're working entirely in RAM:

#define DATABASE ":memory:"

Imported 864913 records in 10.94 seconds

It's not super-practical to store our database in RAM, but it's impressive that we can perform 79 000 inserts-per-second.

Refactoring C Code

Although not specifically an SQLite improvement, I don't like the extra char* assignment operations in the while loop. Let's quickly refactor that code to pass the output of strtok() directly into sqlite3_bind_text() and let the compiler try to speed things up for us:

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {

    fgets (sInputBuf, BUFFER_SIZE, pFile);

    sqlite3_bind_text(stmt, 1, strtok (sInputBuf, "\t"), -1, SQLITE_TRANSIENT); /* Get Route */
    sqlite3_bind_text(stmt, 2, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Branch */
    sqlite3_bind_text(stmt, 3, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Version */
    sqlite3_bind_text(stmt, 4, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Stop Number */
    sqlite3_bind_text(stmt, 5, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Vehicle */
    sqlite3_bind_text(stmt, 6, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Date */
    sqlite3_bind_text(stmt, 7, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Time */

    sqlite3_step(stmt);     /* Execute the SQL Statement */
    sqlite3_clear_bindings(stmt);   /* Clear bindings */
    sqlite3_reset(stmt);        /* Reset VDBE */

    n++;
}
fclose (pFile);

Note: We are back to using a real database file. In-memory databases as fast but not necessarily practical

Imported 864913 records in 8.94 seconds

A slight refactoring to the string processing code used in our parameter binding has allowed us to perform 96 700 inserts-per-second. I think it's safe to say that this is plenty fast. As we start to tweak other variables (i.e. page size, index creation, etc.) this will be our benchmark.


Summary (so far)

I hope you're still with me! The reason we started down this road is that bulk-insert performance varies so wildly with SQLite and it's not always obvious what changes need to be made to speed-up our operation. Using the same compiler (and compiler options), the same version of SQLite and the same data we've optimized our code and our usage of SQLite to go from a worst-case scenario of 85 inserts-per-second to over 96000 inserts-per-second!


CREATE INDEX then INSERT vs. INSERT then CREATE INDEX

Before we start measuring SELECT performance, we know that we'll be creating indexes. It's been suggested in one of the answers below that when doing bulk inserts, it is faster to create the index after the data has been inserted (as opposed to creating the index first then inserting the data). Let's try:

Create Index then Insert Data

sqlite3_exec(db, "CREATE  INDEX 'TTC_Stop_Index' ON 'TTC' ('Stop')", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);
...

Imported 864913 records in 18.13 seconds

Insert Data then Create Index

...
sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "CREATE  INDEX 'TTC_Stop_Index' ON 'TTC' ('Stop')", NULL, NULL, &sErrMsg);

Imported 864913 records in 13.66 seconds

As expected, bulk-inserts are slower if one column is indexed, but it does make a difference if the index is created after the data is inserted. Our no-index baseline is 96 000 insert-per-second. Creating the index first then inserting data gives us 47 700 inserts-per-second, whereas inserting the data first then creating the index gives us 63 300 inserts-per-second.


I'd gladly take suggestions for other scenarios to try... And will be compiling similar data for SELECT queries soon.


Source: (StackOverflow)

What is the difference between #include and #include "filename"?

In the C and C++ programming languages, what is the difference between using angle brackets and using quotes in an include statement, as follows?

  1. #include <filename>
  2. #include "filename"

Source: (StackOverflow)

What is ":-!!" in C code?

I bumped into this strange macro code in /usr/include/linux/kernel.h:

/* Force a compilation error if condition is true, but also produce a
   result (of value 0 and type size_t), so the expression can be used
   e.g. in a structure initializer (or where-ever else comma expressions
   aren't permitted). */
#define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
#define BUILD_BUG_ON_NULL(e) ((void *)sizeof(struct { int:-!!(e); }))

What does :-!! do?


Source: (StackOverflow)

How do I achieve the theoretical maximum of 4 FLOPs per cycle?

How can the theoretical peak performance of 4 floating point operations (double precision) per cycle be achieved on a modern x86-64 Intel CPU?

As far as I understand it take three cycles for an SSE add and five cycles for a mul to complete on most of the modern Intel CPUs (see for example Agner Fog's 'Instruction Tables' ). Due to pipelining one can get a throughput of one add per cycle if the algorithm has at least three independent summations. Since that is true for packed addpd as well as the scalar addsd versions and SSE registers can contain two double's the throughput can be as much as two flops per cycle.

Furthermore, it seems (although I've not seen any proper documentation on this) add's and mul's can be executed in parallel giving a theoretical max throughput of four flops per cycle.

However, I've not been able to replicate that performance with a simple C/C++ programme. My best attempt resulted in about 2.7 flops/cycle. If anyone can contribute a simple C/C++ or assembler programme which demonstrates peak performance that'd be greatly appreciated.

My attempt:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>

double stoptime(void) {
   struct timeval t;
   gettimeofday(&t,NULL);
   return (double) t.tv_sec + t.tv_usec/1000000.0;
}

double addmul(double add, double mul, int ops){
   // Need to initialise differently otherwise compiler might optimise away
   double sum1=0.1, sum2=-0.1, sum3=0.2, sum4=-0.2, sum5=0.0;
   double mul1=1.0, mul2= 1.1, mul3=1.2, mul4= 1.3, mul5=1.4;
   int loops=ops/10;          // We have 10 floating point operations inside the loop
   double expected = 5.0*add*loops + (sum1+sum2+sum3+sum4+sum5)
               + pow(mul,loops)*(mul1+mul2+mul3+mul4+mul5);

   for (int i=0; i<loops; i++) {
      mul1*=mul; mul2*=mul; mul3*=mul; mul4*=mul; mul5*=mul;
      sum1+=add; sum2+=add; sum3+=add; sum4+=add; sum5+=add;
   }
   return  sum1+sum2+sum3+sum4+sum5+mul1+mul2+mul3+mul4+mul5 - expected;
}

int main(int argc, char** argv) {
   if (argc != 2) {
      printf("usage: %s <num>\n", argv[0]);
      printf("number of operations: <num> millions\n");
      exit(EXIT_FAILURE);
   }
   int n = atoi(argv[1]) * 1000000;
   if (n<=0)
       n=1000;

   double x = M_PI;
   double y = 1.0 + 1e-8;
   double t = stoptime();
   x = addmul(x, y, n);
   t = stoptime() - t;
   printf("addmul:\t %.3f s, %.3f Gflops, res=%f\n", t, (double)n/t/1e9, x);
   return EXIT_SUCCESS;
}

Compiled with

g++ -O2 -march=native addmul.cpp ; ./a.out 1000

produces the following output on an Intel Core i5-750, 2.66 GHz.

addmul:  0.270 s, 3.707 Gflops, res=1.326463

That is, just about 1.4 flops per cycle. Looking at the assembler code with g++ -S -O2 -march=native -masm=intel addmul.cpp the main loop seems kind of optimal to me:

.L4:
inc    eax
mulsd    xmm8, xmm3
mulsd    xmm7, xmm3
mulsd    xmm6, xmm3
mulsd    xmm5, xmm3
mulsd    xmm1, xmm3
addsd    xmm13, xmm2
addsd    xmm12, xmm2
addsd    xmm11, xmm2
addsd    xmm10, xmm2
addsd    xmm9, xmm2
cmp    eax, ebx
jne    .L4

Changing the scalar versions with packed versions (addpd and mulpd) would double the flop count without changing the execution time and so I'd get just short of 2.8 flops per cycle. Is there a simple example which achieves four flops per cycle?

Nice little programme by Mysticial; here are my results (run just for a few seconds though):

  • gcc -O2 -march=nocona: 5.6 Gflops out of 10.66 Gflops (2.1 flops/cycle)
  • cl /O2, openmp removed: 10.1 Gflops out of 10.66 Gflops (3.8 flops/cycle)

It all seems a bit complex, but my conclusions so far:

  • gcc -O2 changes the order of independent floating point operations with the aim of alternating addpd and mulpd's if possible. Same applies to gcc-4.6.2 -O2 -march=core2.

  • gcc -O2 -march=nocona seems to keep the order of floating point operations as defined in the C++ source.

  • cl /O2, the 64-bit compiler from the SDK for Windows 7 does loop-unrolling automatically and seems to try and arrange operations so that groups of three addpd's alternate with three mulpd's (well, at least on my system and for my simple programme).

  • My Core i5 750 (Nahelem architecture) doesn't like alternating add's and mul's and seems unable to run both operations in parallel. However, if grouped in 3's it suddenly works like magic.

  • Other architectures (possibly Sandy Bridge and others) appear to be able to execute add/mul in parallel without problems if they alternate in the assembly code.

  • Although difficult to admit, but on my system cl /O2 does a much better job at low-level optimising operations for my system and achieves close to peak performance for the little C++ example above. I measured between 1.85-2.01 flops/cycle (have used clock() in Windows which is not that precise. I guess, need to use a better timer - thanks Mackie Messer).

  • The best I managed with gcc was to manually loop unroll and arrange additions and multiplications in groups of three. With g++ -O2 -march=nocona addmul_unroll.cpp I get at best 0.207s, 4.825 Gflops which corresponds to 1.8 flops/cycle which I'm quite happy with now.

In the C++ code I've replaced the for loop with

   for (int i=0; i<loops/3; i++) {
       mul1*=mul; mul2*=mul; mul3*=mul;
       sum1+=add; sum2+=add; sum3+=add;
       mul4*=mul; mul5*=mul; mul1*=mul;
       sum4+=add; sum5+=add; sum1+=add;

       mul2*=mul; mul3*=mul; mul4*=mul;
       sum2+=add; sum3+=add; sum4+=add;
       mul5*=mul; mul1*=mul; mul2*=mul;
       sum5+=add; sum1+=add; sum2+=add;

       mul3*=mul; mul4*=mul; mul5*=mul;
       sum3+=add; sum4+=add; sum5+=add;
   }

And the assembly now looks like

.L4:
mulsd    xmm8, xmm3
mulsd    xmm7, xmm3
mulsd    xmm6, xmm3
addsd    xmm13, xmm2
addsd    xmm12, xmm2
addsd    xmm11, xmm2
mulsd    xmm5, xmm3
mulsd    xmm1, xmm3
mulsd    xmm8, xmm3
addsd    xmm10, xmm2
addsd    xmm9, xmm2
addsd    xmm13, xmm2
...

Source: (StackOverflow)

Which is faster: while(1) or while(2)?

This was an interview question asked by a senior manager.

Which is faster?

while(1) {
    // Some code
}

or

while(2) {
    //Some code
}

I said that both have the same execution speed, as the expression inside while should finally evaluate to true or false. In this case, both evaluate to true and there are no extra conditional instructions inside the while condition. So, both will have the same speed of execution and I prefer while (1).

But the interviewer said confidently: "Check your basics. while(1) is faster than while(2)." (He was not testing my confidence)

Is this true?

See also: Is "for(;;)" faster than "while (TRUE)"? If not, why do people use it?


Source: (StackOverflow)

Can code that is valid in both C and C++ produce different behavior when compiled in each language?

C and C++ have many differences, and not all valid C code is valid C++ code.
(By "valid" I mean standard code with defined behavior, i.e. not implementation-specific/undefined/etc.)

Is there any scenario in which a piece of code valid in both C and C++ would produce different behavior when compiled with a standard compiler in each language?

To make it a reasonable/useful comparison (I'm trying to learn something practically useful, not to try to find obvious loopholes in the question), let's assume:

  • Nothing preprocessor-related (which means no hacks with #ifdef __cplusplus, pragmas, etc.)
  • Anything implementation-defined is the same in both languages (e.g. numeric limits, etc.)
  • We're comparing reasonably recent versions of each standard (e.g. say, C++98 and C90 or later)
    If the versions matter, then please mention which versions of each produce different behavior.

Source: (StackOverflow)

Why is one loop so much slower than two loops?

Suppose a1, b1, c1, and d1 point to heap memory and my numerical code has the following core loop.

const int n=100000;

for(int j=0;j<n;j++){
    a1[j] += b1[j];
    c1[j] += d1[j];
}

This loop is executed 10,000 times via another outer for loop. To speed it up, I changed the code to:

for(int j=0;j<n;j++){
    a1[j] += b1[j];
}
for(int j=0;j<n;j++){
    c1[j] += d1[j];
}

Compiled on MS Visual C++ 10.0 with full optimization and SSE2 enabled for 32-bit on a Intel Core 2 Duo (x64), the first example takes 5.5 seconds and the double-loop example takes only 1.9 seconds. My question is: (Please refer to the my rephrased question at the bottom)

PS: I am not sure, if this helps:

Disassembly for the first loop basically looks like this (this block is repeated about five times in the full program):

movsd       xmm0,mmword ptr [edx+18h]
addsd       xmm0,mmword ptr [ecx+20h]
movsd       mmword ptr [ecx+20h],xmm0
movsd       xmm0,mmword ptr [esi+10h]
addsd       xmm0,mmword ptr [eax+30h]
movsd       mmword ptr [eax+30h],xmm0
movsd       xmm0,mmword ptr [edx+20h]
addsd       xmm0,mmword ptr [ecx+28h]
movsd       mmword ptr [ecx+28h],xmm0
movsd       xmm0,mmword ptr [esi+18h]
addsd       xmm0,mmword ptr [eax+38h]

Each loop of the double loop example produces this code (the following block is repeated about three times):

addsd       xmm0,mmword ptr [eax+28h]
movsd       mmword ptr [eax+28h],xmm0
movsd       xmm0,mmword ptr [ecx+20h]
addsd       xmm0,mmword ptr [eax+30h]
movsd       mmword ptr [eax+30h],xmm0
movsd       xmm0,mmword ptr [ecx+28h]
addsd       xmm0,mmword ptr [eax+38h]
movsd       mmword ptr [eax+38h],xmm0
movsd       xmm0,mmword ptr [ecx+30h]
addsd       xmm0,mmword ptr [eax+40h]
movsd       mmword ptr [eax+40h],xmm0

EDIT: The question turned out to be of no relevance, as the behavior severely depends on the sizes of the arrays (n) and the CPU cache. So if there is further interest, I rephrase the question:

Could you provide some solid insight into the details that lead to the different cache behaviors as illustrated by the five regions on the following graph?

It might also be interesting to point out the differences between CPU/cache architectures, by providing a similar graph for these CPUs.

PPS: The full code is at http://pastebin.com/ivzkuTzG. It uses TBB Tick_Count for higher resolution timing, which can be disabled by not defining the TBB_TIMING Macro.

(It shows FLOP/s for different values of n.)

enter image description here


Source: (StackOverflow)